3.317 \(\int \frac{1}{x^3 (a+b x^4+c x^8)} \, dx\)

Optimal. Leaf size=184 \[ -\frac{\sqrt{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{1}{2 a x^2} \]

[Out]

-1/(2*a*x^2) - (Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(
2*Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqr
t[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.224378, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1359, 1123, 1166, 205} \[ -\frac{\sqrt{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{1}{2 a x^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(a + b*x^4 + c*x^8)),x]

[Out]

-1/(2*a*x^2) - (Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(
2*Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqr
t[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1359

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^((2*n)/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (a+b x^4+c x^8\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (a+b x^2+c x^4\right )} \, dx,x,x^2\right )\\ &=-\frac{1}{2 a x^2}+\frac{\operatorname{Subst}\left (\int \frac{-b-c x^2}{a+b x^2+c x^4} \, dx,x,x^2\right )}{2 a}\\ &=-\frac{1}{2 a x^2}-\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 a}-\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 a}\\ &=-\frac{1}{2 a x^2}-\frac{\sqrt{c} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0319162, size = 75, normalized size = 0.41 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 c \log (x-\text{$\#$1})+b \log (x-\text{$\#$1})}{\text{$\#$1}^2 b+2 \text{$\#$1}^6 c}\& \right ]}{4 a}-\frac{1}{2 a x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(a + b*x^4 + c*x^8)),x]

[Out]

-1/(2*a*x^2) - RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[x - #1] + c*Log[x - #1]*#1^4)/(b*#1^2 + 2*c*#1^6) & ]/(4
*a)

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 240, normalized size = 1.3 \begin{align*} -{\frac{c\sqrt{2}}{4\,a}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}b}{4\,a}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}}{4\,a}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}b}{4\,a}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{1}{2\,a{x}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(c*x^8+b*x^4+a),x)

[Out]

-1/4*c/a*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))+1/4*c
/a/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2))*b+1/4*c/a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^
(1/2))+1/4*c/a/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*c
+b^2)^(1/2))*c)^(1/2))*b-1/2/a/x^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

-integrate((c*x^4 + b)*x/(c*x^8 + b*x^4 + a), x)/a - 1/2/(a*x^2)

________________________________________________________________________________________

Fricas [B]  time = 1.82014, size = 2314, normalized size = 12.58 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(1/2)*a*x^2*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4
*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-(b^2*c^2 - a*c^3)*x^2 + 1/2*sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^
3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c +
 (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*
a*x^2*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b
^2 - 4*a^4*c))*log(-(b^2*c^2 - a*c^3)*x^2 - 1/2*sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^3*b^4 - 6*a^4*b^
2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^
4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) + sqrt(1/2)*a*x^2*sqrt(-(b^3
 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*l
og(-(b^2*c^2 - a*c^3)*x^2 + 1/2*sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)
*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 -
 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x^2*sqrt(-(b^3 - 3*a*b*c - (a^
3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-(b^2*c^2 - a
*c^3)*x^2 - 1/2*sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a
*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2
*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) + 2)/(a*x^2)

________________________________________________________________________________________

Sympy [A]  time = 3.64692, size = 153, normalized size = 0.83 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (4096 a^{5} c^{2} - 2048 a^{4} b^{2} c + 256 a^{3} b^{4}\right ) + t^{2} \left (192 a^{2} b c^{2} - 112 a b^{3} c + 16 b^{5}\right ) + c^{3}, \left ( t \mapsto t \log{\left (x^{2} + \frac{- 512 t^{3} a^{5} c^{2} + 384 t^{3} a^{4} b^{2} c - 64 t^{3} a^{3} b^{4} - 20 t a^{2} b c^{2} + 20 t a b^{3} c - 4 t b^{5}}{a c^{3} - b^{2} c^{2}} \right )} \right )\right )} - \frac{1}{2 a x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**4*(4096*a**5*c**2 - 2048*a**4*b**2*c + 256*a**3*b**4) + _t**2*(192*a**2*b*c**2 - 112*a*b**3*c + 16
*b**5) + c**3, Lambda(_t, _t*log(x**2 + (-512*_t**3*a**5*c**2 + 384*_t**3*a**4*b**2*c - 64*_t**3*a**3*b**4 - 2
0*_t*a**2*b*c**2 + 20*_t*a*b**3*c - 4*_t*b**5)/(a*c**3 - b**2*c**2)))) - 1/(2*a*x**2)

________________________________________________________________________________________

Giac [C]  time = 7.44808, size = 1721, normalized size = 9.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

-((a*c^3)^(1/4)*a*c*x^4*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*x^4*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a
*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*cosh(1/2*imag_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1
/4)*a*b*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c
)*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/((a/c)^(1/4
)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) -
((a*c^3)^(1/4)*a*c*x^4*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*x^4*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*
abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*cosh(1/2*imag_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/
4)*a*b*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)
*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/((a/c)^(1/4)
*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) + 1
/2*((a*c^3)^(1/4)*a*c*x^4*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*x^4*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/
(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*cos(5/4*pi + 1/2*rea
l_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^
(1/4)*a*b*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a
*c)*b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a
/c))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) + 1/2*((a*c^3)^(1/4)*a*c*x^4*cos(1/4*pi + 1/2*real_par
t(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)
*a*c*x^4*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/
2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*b*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*co
s(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a/c))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*
a^2) - 1/2/(a*x^2)